
NASA-CR-203436

Using Strassen's Algorithm to Accelerate the Solution of

Linear Systems

David H. Bailey, King Lee l, and Horst D. Simon _

Report RNR-90-001, February 1990

NAS Systems Division

NASA Ames Research Center, Mail Stop T-045-1

Moffett Field, CA 94035

February 20, 1990

4

1The mailing address for Lee is Computer Science Dept., California State

University, Bakersfield, CA 93309. This work is supported through NASA
Contract NAS 2-12961

2The author is an employee of Computer Sciences Corporation. This work

is supported through NASA Contract NAS 2-12961

Using Strassen's Algorithm to Accelerate

the Solution of Linear Systems

David H. Bailey,

King Lee 1,

and

Horst D. Simon 2

Numerical Aerodynamic Simulation (NAS) Systems Division

NASA Ames Research Center, Mail Stop T-045-1

Moffett Field, CA 94035

February 20, 1990

Abstract

Strassen's algorithm for fast matrix-matrix multiplication has been

implemented for matrices of arbitrary shapes on the Cray-2 and Cray

Y-MP supercomputers. A number of techniques have been used to re-

duce the scratch space requirement for this algorithm, at the same time

preserving a high level of performance. When the resulting Strassen-

based matrix multiply routine is combined with some routines from

the new LAPACK library, LU decomposition can be performed with

rates significantly higher than by conventional means. We succeeded

in factoring a 2048 × 2048 matrix on the Cray Y-MP at a rate equiv-
alent to 325 MFLOPS.

Keywords: Strassen's algorithm, fast matrix multiplication, linear systems,

LAPACK, vector computers.

AMS Subject Classification 65F05, 65F30, 68A20.

CR Subject Classification F.2.1, G.1.3, G.4

1The mailing address for Lee is Computer Science Dept., California State University,
Bakersfield, CA 93309. This work is supported through NASA Contract NAS 2-12961

2The author is an employee of Computer Sciences Corporation. This work is supported
through NASA Contract NAS 2-12961

1 Introduction

The fact that matrix multiplication can be performed with fewer than 2n a

arithmetic operations has been known since 1969, when V. Strassen published

an algorithm that asymptotically requires only about 4.7n 2"s°7 operations

[13]. Since then other such algorithms have been discovered, and currently

the best known result is due to Coppersmith and Winograd [4], which reduces

the exponent of n to only 2.376. Unfortunately, these newer algorithms are

significantly more complicated than Strassen's. To our knowledge a thorough

investigation of the usefulness of these techniques for an actual implemen-

tation has not yet been carried out. It appears that these asymptotically

faster algorithms only offer an improvement over Strassen's scheme when the

matrix size n is much larger than currently feasible. Thus the remainder of

this paper will focus on implementation and analysis of Strassen's algorithm.

Although Strassen's scheme has been known for over 20 years, only re-

cently has it been seriously considered for practical usage. Partly this is

due to an unfortunate myth that has persisted within the computer science

community regarding the "cross-over"point for Strassen'salgorithm -- the

sizeof matrices forwhich an implementation of Strassen'salgorithm becomes

more efficientthan the conventional scheme. For many years itwas thought

that thislevelwas well over 1,000 × 1,000 [8].Even recently published ref-

erence works have propagated the unfounded assertion (i.e. [12], p. 76) that

Strassen's algorithm is not suitable for matrices of reasonable size. In fact,

for some new workstations, such as the Sun-4 and the Silicon Graphics IRIS

4D, Strassen is faster for matrices as small as 16 x 16. For Cray systems

the cross over point is roughly 128, as will be seen later, so that square ma-

trices of size 2,048 on a side can be multiplied nearly twice as fast using a

Strassen-based routine (see [1] and below).

Another reason that Strassen's algorithm has not received much attention

from practitioners is that it has been widely thought to be numerically un-

stable. Again, this assertion is not really true, but instead is a misreading of "

the paper in which the numerical stability of Strassen_s algorithm was first

studied [11]. In this paper_ Miller showed that if one adopts a very strict

definition of numerical stability, then indeed only the conventional scheme is

numerically stable. However_ if one adopts a slightly weaker definition of sta-

bility, one similar to that used for linear equation solutions, for example_ then

Strassen's algorithm satisfies this condition. The most extensive study of the

8

stability of Strassen's algorithm is to be found in a recent paper by Higham

[9]. Using both theoretical and empirical techniques, he finds that although

Strassen's algorithm is not quite as stable as the conventional scheme_ it ap-

pears to be sufficiently stable to be used in a wide variety of applications. In

any event_ Strassen's algorithm certainly appears to be worth further study,

including implementation in real-world calculations.

This paper will describe in detail the implementation of a Strassen-based

routine for multiplying matrices of arbitrary size and shape (i.e. not just

square power-of-two matrices) on Cray supercomputers. A number of ad-

vanced techniques have been employed to reduce the scratch space require-

ment of this implementation, while preserving a high level of performance.

When the resulting routine is substituted for the Level 3 BLAS subroutine

SGEMM [6, 7] in the newly developed LAPACK package [2], it is found

that LU decomposition can be performed at rates significantly higher than

with a conventional matrix multiply kernel. Thus it appears that Strassen's

algorithm can indeed be used to accelerate practical-sized linear algebra cal-

culations.

This study is based on the authors' implementation of Strassen's algo-

rithm for Cray computers, and all results are based on this implementation.

Since the completion of this study, however, the authors learned that Cray

Research Inc. has developed a library implementation of Winograd's varia-

tion of Strassen's algorithm. Readers interested in using Strassen's algorithm

on Cray systems are directed to this routine, which is known as "SGEMMS",

available under UNICOS 4.0. and later [5]. Furthermore in [10] it is pointed

out, that the ESSL library contains routines for real and complex matrix

multiplication by Strassen's method tuned for the IBM 3090 machines.

2 Performance of the Strassen Algorithm

The Strassen algorithm multiplies matrices A and B by partitioning the

matrices and recursively forming the products of the submatrices. Let us

assume, for the moment, that A and B are n × n matrices_ and that n is a

power of 2. If we partition A and B into four submatrices of equal size,

C21 C22 = A21 A22 B21 B_2 (1)

D

and compute

P1 = (All + A22)(Bx_ + B22)

P2 = (A2_ + A22)(Bn)

P8 = (A_x)(Bx2 + B22)

P4 = (A22)(B_ + B22)

Ps = (A2x + Axl)(BxI + B22)

P_ = (Ax2 + A22)(B2x + B22)

then it can be seen that

(2)

C_ = P, + P4 - Ps + P_

C1_ = P_ + P5

c:, = P: + P4
C22 = PI + Ps- P2 + Pe.

(3)

If the conventional matrix multiplication algorithm is used in (2), then

there will be approximately 7- 2(n/2) 3 arithmetic operations in forming the

matrix products in (2) and 18-(n/2) 2 arithmetic operations involved in adding

and subtracting the submatrices on the right side of (2) and (3).

Ignoring for the moment the n 2 terms, we see that the number of arith-

metic operations has been reduced from 2n 3 to (7/8) - 2n 3 arithmetic oper-

ations in going from the conventional algorithm to the Strassen algorithm.

We may continue to apply the Strassen algorithm until the matrices are so

small the conventional algorithm is faster for them. Denote this point as 2Q.

The number of times we can apply the reduction is

k- Llogd, lQ)J > Q.

The total number of arithmetic operations performed by the conventional n 3

algorithm on submatrices is

(7/8) k • 2n 3 _ 2Qs-z°g27nZ°g27 = 2Q°.2n 2.s (4)

In the following the performance of the computation of the matrix prod-

uct AB will be given in MFLOPS, where the MFLOPS for implementations

3

4

V

of Strassen's algorithm ate also based on 2n s ttoating point operations. Since

the number of floating point operations for Strassen's algorithm is actually

less than 2r_3, we will obtain MFLOPS performance for the new implementa-

tion that occasionally exceed the peak advertised speed of the machine. We

have chosen this form for expressing performance, because the performance

improvements of the new implementation over the traditional matrix mul-

tiplication algorithm are expressed more clearly. All numerical experiments

were carried out on the Cray Y-MP of the NAS Systems Division of NASA

Ames Research Center. This is an early (serial number 1002) machine with

a 6.3 nsec cycle time s and hence a peak performance of 318 MFLOPS per

processor. All our results are single processor results. No attempt was made

to use all eight processors and multitasking techniques.

The performance of the conventional matrix multiplication algorithm on

vector machines is not a smooth function of r_, but peaks at points when rL is

a multiple of the vector register length, drops immediately afterwards, and

then increases again to the next multiple of the vector register length. For

the Cray Y-MP there is a 14% drop.at n = 64, a 8% drop at n = 19.8, and

4% drop at n -- 9.56 (Table 1). All measurements in Table 1 were made on a

Cray Y-MP in mulfiuser mode. The performance in Table 1 was obtained by

using an assembly coded matrix multiplicaiton subroutine provided by Cray

Research in SCILIB [5]. Here we list the average of four runs. Performance

may vary depending on the load.

For the Strassen algorithm, with Q _- 64, we expect to see an increase in

MFLOPS at each level of recursion due to the reduced number of operations

(ignoring n 2 terms). At r_ -- 130, however, the Strassen algorithm would

require seven matrix multiplications with n -- 65, and these multiplications

would be performed at the low rate of about 244 MFLOPS compared with

the 9.69 MFLOPS using the conventional algorithm for n = 130 (Table 1).

The lower performance would cancel out the gain in reduction in the number

of operations (Fig. 1). If on the other hand we set Q = 80 we can be sure

that the minimum size of matrices that we multiply is 80 and in this way

avoid the "vector length mod 64 = 1" effect at vector length 65. However

we may still still see this effect when n = 9.58 where we multiply 7 matrices

of size 129. But the speed of matrix multiplication of matrices of size 19.9 is

269 MFLOPS, whereas the speed is 9.44 MFLOPS when the size is 65 (Fig.

2).
The optimal value of Q depends to a large extent on the relative speed

4

.

Table 1: Matrix Multiplication

Algorithm

R

64

65

66

67

128

129

130

131

256

257

258

259

OO

Performance Using the Conventional

MFLOPS

284

244

247

250

289

267

269

271

291

280

281

282

296

of the computation of n2 and ns terms. To see thislet S be the speed of the

conventional algorithm_ $I be the speed when computing the na terms_ $2 be

the speed when computing the n2 terms_ and RS --SI/S_. We assume that

S _ $I and S > $2. For the moment letus consider the n2 terms as including

all operations not involved in the the n s terms. Thus the n2 terms include

moving submatrices, procedure calls_as well as arithmetic operations. In

order to get any gain from the bottom levelof the recursion the fractionof

the time spent in the slower computation of the n_ terms must bc sufficiently

small so as not to offseta 10 % reduction in the operation count. In other

words, the larger the value of RS the less time we must spend in the n2

terms. Wc can decrease the time spent in the nz terms by increasing Q,

the minimal sizeof the matrices at the lowest levelof recursion. Increasing

Q has the effectof increasing the number of operations in the na terms and

decreasing the number of operations in the n: terms. Thus Strassen willwork

best (small Q and many levelsof recursion)when RS isrelativelysmall.

In a detailed analysis of arithmetic operations of the Strassen algorithm,

Higham [9]has shown that, assuming the speed of scalarmultiplicationis

the same as scalaraddition, Q -- 8 minimizes the operation count for square

5

g

v

matrices of any size greater than eight. Since the computations of the n 2

terms are slower than the n 3 terms the value of eight will be a lower bound

on the optimal value of Q. For machines with conventional architecture

like Sun workstations a reasonable value for optimal Q might be 16. For a

balanced vector machines like the Cray Y-MP, chaining and more intensive

use of registers for the n 3 terms would increase the ratio RS and a reasonable

value of an optimal Q may be around 80. While the Cray 2 does not have

chaining, it can still produce one addition and one multiplication result in

one clock cycle. It also has fast local memory and slow main memory, and

that would further increase the ratio RS. A few measurements indicate that

the optimal value of Q on the Cray 2 is about 200.

The operation count for the n 2 terms is 18- (n/2) 2. On vector machines

this count is not a good in,cation of the time taken to perform the com-

putations because the speed of computing the n _ terms will be much slower

than the speed of computing on the u 3 terms for reasons given above. Let

us assume that the time to perform computation on the n 2 terms is C(n/2) 2

where we can adjust the value of C to take into account the relative speed

of performing the n 2 terms and the n 3 terms. At the k-th level of recursion,

the time spent on the n 2 terms is 7 k-1 • C(n/2k) 2. The total time spent on

the n' terms is, assuming k : Llog2(n/Q)J,

T = C +7 _- +...+ _ (5)

C
--_ o.sn 2"s (6)

3.Q

We should first note that each term in the series in equation (5) refers

to a level of recursion, and that the magnitude of the terms in the series

are rapidly increasing. This means that most of the contribution of the n 2

terms occur deep in the recursion. Secondly, the coefficient of n 2"s in (6) will

in general be comparable to the coefficient of n 2"s in (4). Thirdly, note that

k is not a continuous function of n, but jumps when n = 2iQ, i -- 2,...

The fraction of the time spent in the n 2 terms will be at a local maximum

at n = 21Q and will decrease as n increases until just before n -- 21+lQ, at

which point another term is added to the series in (5) and the fraction will

take a jump. This accounts for part of the performance drop at n = 128 and

at n = 256 in Figure 1.

G

oz!s x!.ael_

.....................o[0_
............................ , _............................ ,,.. :

oo
0

0

0

: 0 c

O0

• ! _,_o
o : 0

...........N"'.................i.................j

_o -.o _ooooO____
o_'"'00 : "_

ooo_ o_o_.- i
o ! !

0

0

iz9=ON 'SV'-I[I p_po3 sns.t_A uosse.tlS SVN

© et*_

Ip P

Oxt ©

NAS Strassen versus coded BLAS, NQ=80

360

330

o NAg Strassen,NQ=80
• Coded BLAS

300 ®

E
6e

240 ...''.."...........................

128 192 256 320 384 448 512

Matrix Size

Let R be the ratio of the time spent in the n 2 terms to the n 3 terms and

T be the total time to perform the matrix multiplication. Then from (4),

(5), and (6) we can see that

1 7 "-I

R = + ... +
2n

C
-- (8)
6Q

C

T ,._ (-3-_ + 2Q'2)n2"a (9)

Flow traces of the Strassen algorithm, with Q = 64, were taken for n --

128 and n = 256, and R was found to be 0.10 and 0.12 respectively. The

corresponding values of C turn out to be 90 and 71. Since for n = 128 the

ratio of the number of arithmetic operations performed in the n 2 terms and

in the n s terms is about .02, we can infer that, ignoring overhead, the speed

of the n _ terms is one fifth the speed of the n 3 terms. If one takes a value

of 80 for C, then for large n, R will tend toward .20, and the n 2 terms will

account for about 16% of the coefficient in (9).

pC. ThisIf we fix C and n in (9) then T will have a minimum when Q = _

value of Q, Qo, is the value of Q that theoretically minimizes the time to

perform matrix multiplication for square matrices for a particular value of C

and n. If we substitute this value into (8) and (9), we find

1
R -- --

4

5 -2 28

T = _Q'_n"

52 2_s
= n".

Therefore when Q = Q0 we should expect that for square matrices about

one fifth of the time is spent computing the n _ terms. The total time for the

matrix multiplication depends on Q0 "2 or C "2, so that the smaller the ratio

RS, the smaller the coefficient of n 2"s.

It is difficult to determine the optimal value Q0 over all values of n,

especially for vector machines. First if n is not a power of 2, that is to

9

say if n has an odd factor, special corrections will have to be made (see

below) which will increase the number of operations in the n 2 terms. This

means that C is a function of n. Secondly the effect of different vector

lengths in the computations may affect C. One problem is that one value

of Q may give relatively good performance on matrices of size N and poor

performance for matrices of size M, and at another value of Q we might have

fair performances for matrices of these sizes. We saw that with Q = 64 we

had good performance when r_ = 128, but poor performance when r_ = 130.

With _ = 80 we had fair performance with r_ = 128 and n = 130 (no

Strassen in both cases). In other words for every square matrix there may

be a different optimal Q, and the situation for rectangular matrices will be

even more complicated. On the Cray Y-MP we found a value of 80 for C,

and this would yield a _0 of about 57. A value of 80 may be preferable to

avoid the "vector length mod 64 = 1" effect.

Figure 3 shows plots our $trassen against the Cray Strassen. The code

of the r_2 terms was written in Fortran for the NAS $trassen, and written in

assembly for the Cray Strassen. The code for the rL3 terms for both programs

were written in assembly. The value of G should be smaller for the Cray

program, and that leads to a smaller value for the coefficient in (9). The

assembly coding of the important order n 2 computations probably accounts

for the performance differences observed in Figure 3.

We have assumed that at each stage of the recursion we could partition

the matrices into submatrices of size (n/9.). In the event that n is odd we may

multiply matrices of size r_- 1, and make a correction after the multiplication

is performed. The complexity of the correction will be O(n _) and the work

involved in the correction is in addition to the 7z2 terms. This correction

for odd dimensions will be expensive if it occurs in the stages of recursion

corresponding to the last terms of the series in (5). In those cases not only will

there be large numbers of corrections to be made, but also the corrections will

be made with relatively short vectors. These corrections introduce a pattern

of variation in performance. For example, if _ = 64, and n = 260 then at

each stage of the recursion n is even, and no corrections need be made. When

n - 261, one correction on a matrix of size 261 has to be made. If n -- 262,

we have to make 7 corrections on matrices of size 131. Ifn = 263, we have to

make one correction for a matrix of size 263, and 7 for matrices of size 131.

If n = 264 we do not have to make any corrections. This pattern will repeat

for the next 4 dimensions. Table 2 contains the MFLOPS performance for

10

o_

I-I

Cray Strassen versus NAS Strassen, NQ=64

i o........ ; o o390 : :
• o

O NA$ $1r_n, NQ=64 I
I • crayS_n J e * * .'*

360 ' . '•.............................-" "" i
: •

O o

O.O,.....

O o

240

•

0

0

• • •
gO

•

128 192 256 320 384 4_.8

Matrix Size

oO000

512

Table 2: Matrix Multiplication Performance Using NAS Strassen

n

260

261

262

263

264

265

266

267

268

MFLOPS

279

275

268

265

284

280

273

269

288

the Strassen algorithm when n takes on values from 260 to 268.

The Strassen algorithm can be applied to non-square matrices as well as

square matrices. Let A be l × m and B be rn × n; the conventional algorithm

requires approximately 21ran arithmetic operations. We stop recursion when

the minimum of I, m, n is less than 2Q. If one or two of the dimensions

is much greater than the smallest dimension, then "n 2'' terms become a

smaller fraction of the total operation count, and the reduction in operation

count becomes more pronounced. Table 3 gives the performance for several

rectangular matrices. We would like to point out that in 1970 Brent used

both the odd dimension correction and Strassen for rectangular matrices in

his unpublished report [3].

In summary, the performance of the Strassen algorithm is influenced by

the following factors: the reduction in the number of operations, the dimen-

sions of the matrices on which the conventional algorithm operates (e.g., 65

versus 127 on the Y-MP), the proportion of the computation due to the n 2

terms, and the number of times we have to correct for o.dd dimensions.

3 Memory Requirements

The straightforward way of implementing the Strassen algorithm would be

to compute the submatrices P1, P2,.-.,PT, appearing in equations (2) and

then compute Cll, C12, C21, C22. For this method we need two scratch arrays

to hold the operands on the right side of equations (2) and seven scratch

12

,

Table 3: Matrix Multiplication for Rectangular Matrices Using NAS
Strassen

I m n MFLOPS

128 128 128 291

256 128 128 300

512 128 128 304

128 128 128 291

128 256 128 305

128 512 128 312

128 128 128 291

128 128 256 296

128 128 512 298

128 128 128 290

256 256 128 311

512 512 128 321

128 128 128 291

256 128 256 303

512 128 512 309

128 128 128 289

128 256 256 309

128 512 512 319

13

E

arrays to hold the matrices P1,...,PT. Then the amount of scratch space

required is 9 (n/2) z. At the k-th level of recursion the space requirement will

9(n/2_):_- - . The total space requiredbe win be

9n z +_-_+...+_- =3n z 1- .

Note that each term of the series corresponds to a level of recursion, and

that first two terms of the series account for more than 90% of the sum.

An alternative method is to compute P1, store that result in Cll and C22,

compute P2, store that result in C21 and subtract it from C_2, and so on. We

need two matrices to hold the operands on the right sides of equations (2),

and only one to hold the the matrices P1,-.-, PT. The total space required

would be

3n 2 ÷ _-_+ ...-{-_ ---- i-- •

Even though the number of arithmetic operations is the same for both

methods, the second method would run more slowly on vector machines be-

cause there is more data movement. The fast (first) method holds more

intermediate results in registers in the computation of Cll,..., C_¢ in equa-

tions (3). The penalty in speed for the second method is machine dependent.
The difference between the fast and slow versions was less than 3 % for n

between 128 and 512.

Fortunately, it is possible to combine the best features of both methods.

We can get most of the benefits of the smaller memory requirements of the

slow method if we use that method at the first one or two levels of recursion

corresponding to the early terms of (3). We may expect to get most of the

benefits of the faster method by using that method deep in the recursion,

corresponding to the later terms of (5).

If one level of the slow method were used, and the remaining levels used

the faster method, the scratch space requirement would be 1.5 • n2; if two

levels of the slow method were used, the scratch space requirement would be

1.25 • n2; if three levels of the slow method were used, the space requirement

would be 1.125 • n 2. The most desirable version for a computer may be

dictated by the architecture and configuration. Using zero or one slow level

might be appropriate for the Cray-2 because it has large common memory,

14

and it is relatively slow on the n 2 terms. Using one or two levels of the slow

method would be appropriate for the Cray Y-MP because it has relatively

small memory per processor and is relatively efficient computing the n 2 terms.

For the case of rectangular matrices, a bound for the required scratch

space for the slower and faster versions turns out to be

Im mn 7. In

T + T + ---3- (fast version)

lm mn In

3 + T + -3 (slow version).

We might mention that the Cray Research implementation of Wino-

grad's variation of the Strassen Alogrithm required memory bounded by

2.34. max(/,m), max(re, n)(see [5]).

In the special cases when one or two of the dimensions of A or B is

much less than the other dimension(s), further savings of scratch memory

is possible. Take for example the case when l = K, m = 4K, n = 4K. The

product AB can be computed by multiplying A with four 4K x K submatrices

of B. The amount of scratch space required for the slow version would be

3K 2 instead of 8K 2. Multiplying A by submatrices of B in this manner does

not increase the count of operations, but some bookkeeping and short vector

effects are introduced.

The NAS implementation is called SSGEMM and uses the exact same

calling sequence as the LINPACK subroutine SGEMM. The scratch memory

is in common, and there is a default size. However the size could be increased

by compiling and loading a function like:

INTEGER FUNCTION GETSCR

PARAMETER (ISIZE = 100000)

COMMON/SCRATCH/X(ISIZE)

GETSCR = ISIZE

END

When SSGEMM is called, it is first determined whether there is enough

scratch memory to use the full Strassen algorithm. If there is not enough

memory to use the full Strassen algorithm, it is determined whether there is

enough memory to use a partial Strassen. This means that, for example, only

two levels of recursion in the Strassen algorithm are used, when with more

15

ql

memory three or more levels could have been used. If partial Strassen can-

not be used, then the subroutine SSGEM will call SGEMM, the conventional

matrix multiply routine that does not need any scratch memory. Our imple-

mentation uses multiple copies of the code, and there are at most six levels

of recursion allowed. This means that our version could in principle multiply

4,000 x 4,000 matrices. We note that the Cray subroutine SGEMMS uses

the same calling sequence as SGEMM, except that the last parameter is a

scratch array.

In summary we have implemented a flexible, general purpose, matrix-

matrix multiplication subroutine in the style of the level 3 BLAS [6, 7].

This subroutine can be used in all contexts, where the level 3 BLAS routine

SGEMM is used, subject to the availability of the additional workspace. We

will now demonstrate this point with the linear equation solving routine from

LAPACK, which makes extensive use of SGEMM and level 3 BLAS.

4 Applications to LAPACK

LAPACK [2] is a new library of linear algebra routines being developed with

the objective of achieving very high performance across a wide range of ad-

vanced systems. The main feature of this package is its reliance on block

algorithms that preserve data locality, together with a facility that permits

near-optimal tuning on may different systems.

SGETRF is a LAPACK subroutine that uses dense matrix multiplica-

tion. This subroutine performs a LU decomposition on an n × n matrix A

by repeatedly calling the subroutine SGETF2 to perform a LU decompo-

sition on a diagonal submatrix of size NB, calling STRSM to compute the

superdiagonal block of U, and calling SGEMM to perform matrix multipli-

cation to update the diagonal and subdiagonal blocks. The matrix multipli-

cations are performed on matrices of sizes J × NB arid NB × (n - J) for

J :- NB: 2. NB,...,n.The parameter NB, also refered to as blocksize, can

be chosen for performance tuning.

A Fortran version of this subroutine from Argonne National Laboratories

was linked to call SGETF2 and STRSM from the Cray libraries and either

the Cray SCILIB version of SGEMM or our Strassen version of SGEMM.

Table 4 gives the approximate time spent in each of the three subroutines

and Table 5 gives performance for different sizes of n and NB. The timings

16

t

,g

are given for the case when the leading dimension of A is 2049. If the leading

dimension were 2048 the performance would be less due to memory stride

conflicts in STRSM. Table 5 shows that no single value of NB gives uniformly

the best performance for varying problem sizes.

Table 4: Fraction of Time Spent in Subroutines of SGETRF, NAS

Strassen, NB= 512

N

512 0.99

1024 0.51

1536 0.33

2048 0.25

SGETF2 SGEMM STRSM

0.00

0.29

0.36

0.39

0.00

0.19

0.30

0.36

Even when A has dimension 2048, we are performing matrix multipli-

cation with matrices whose minimum dimension is 512 at the rate of 368

MFLOPS, and this rate is achieved only on part of the computation. In the

Case when n = 2048 and NB : 512 three matrix multiplications are per-

formed. The dimensions of the matrix factors are 1536 by 512 and 512 by

512; 1024 by 1024 and 1024 by 512; and 512 by 1536 and 1536 by 512. With

Q = 64 and using one level slow method we see that the scratch memory

requirement is bounded by 11/12 megawords. As mentioned earlier, a bound

for the memory requirement for implementation of the algorithm by Cray Re-

search is 2.34. max(l, m). max(m, n). The matrix multiplication that requires

the most scratch space is the one that multiplies 512 by 1536 and a 1536 by

512 matrices, and the scratch memory requirement to form this product is

5.75 megawords. It is possible to decrease the memory requirements a factor

of about two for the Cray Strassen by partitioning the matrices into two

submatrices, performing the multiplications on submatrices and combining

the products of the submatrices.

Higham [9] discusses several other Level 3 BLAS subroutines that may use

the Strassen algorithm. One is a subroutine to multiply an upper triangular

matrix U with a general matrix B. Higham writes

A : (Ull U12)_Bll B12_ (U11Bll + U12B21 UllB12+ U1,B22)0 U22 k B21 B22] = U22B21 U22BB21

The two dense matrix multiplications involving U12 may be computed using

the Strassen algorithm, and the remaining products are products of triangular

17

4

Table 5: Performance of SGETRF in MFLOPS as a Function of n

and NB
NB " Tt

512110241153612048
Coded BLAS

128 262 284 290 291

256 250 281 288 291

512 229 274 285 289

768 229 250 281 288

1024 229 260 280 286

Strassen

128 250 290 299 304

256 243 297 311 317

512 217 290 314 325

768 216 272 ,305 318

1024 216 258 294 319

matrices with general dense matrices and can be computed recursively. It

can be shown, assuming square matrices, that the number of arithmetic

operations is O(n2"S). However the asymptotic speed is approached more

slowly than in the case of matrix multiplication. For example, for 1024 x 1024

matrices half the operations would be computed at the rate of 368 MFLOPS,

(the rate of the Strassen algorithm for n = 512), a quarter of the operations

would be carried out at the rate of 326 MFLOPS (n = 256), and one eighth

at 289 MFLOPS. The remaining one eighth would be carded out at the

conventional triangular matrix multiply speed. The improvement in speed for

the triangular matrix multiply should be significantly better than that of the

SGETRF decomposition because a larger fraction of the operations can be

computed by the Strassen algorithm. We should expect similar performance

improvements for the other Level 3 BLAS subroutines discussed by Higham

that use matrix multiplication.

18

I

5 Conclusions

The speed in terms of effective MFLOPS for the Strassen algorithm increases

without bound with increasing size of the matrix. On the Gray Y-MP, the

Strassen algorithm increased the performance by 10% every time the dimen-

sion doubled. For r_ = 1024 the conventional Gray matrix multiply routine

had a performance of 296 MFLOPS, while our Strassen could run at over

400 MFLOPS and the Gray version even faster. The increase in performance

with matrix size is not a smooth function of the size of the matrices, but

shows minor oscillations and jumps. The causes of the jumps and oscilla-

tions are the drop in operation count in the n s terms, short vector effects,

the effect of n 2 terms, and corrections for even and odd matrices.

We succeeded in implementing a general purpose matrix-matrix multipli-

cation routine for the Gray Y-MP, which can handle rectangular matrices of

arbitrary dimension. Even for moderately sized matrices this routine out-

performs the functionally equivalent level 3 BLAS subroutine based on the

traditional multiplication algorithm. Because of its ttexibility, this subrou-

tine can be used as computational kernel for higher level applications. This

has been demonstrated by integrating this routine with the linear equation

solver in LAPAGK.

A large number of LAPACK subroutines are using SGEMM, not just the

dense unsymmetric LU factorization. The use of Strassen's method poten-

tially could speed up a number of linear equations and eigenvalue computa-

tions. In addition to that, complex routines in LAPAGK could be improved

using the "trick" discussed by Higham in [10]. Generally, we believe that

the performance of LAPACK and Level 3 BLAS subroutines that use dense

matrix multiplication will improve if the Strassen algorithm is employed; the

exact improvement will depend on the size of the problem and to a large part

on the fraction of the computation, that can take advantage of the Strassen

algorithm.

Acknowledgement We wish to thank Nick Higham for reviewing an earlier

version of this manuscript, and suggesting numerous improvements to the

presentation of our results.

19

References

[1] D. H. Bailey. Extra high speed matrix multiplication on the CRAY-2.

SIAM J. Sci. Stat. Comp., 9(3):603 - 607, 1988.

[2] C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A: Greenbaum, S. Ham-

marling, and D. Sorensen. LAPA GK Working Note # 5 - Provisional

Contents. Technical Report ANL-88-38, Argonne National Laboratory,

September 1988.

[3] R.P. Brent. Algorithms for Matrix Multiplication. Technical Report CS

157, Comp. Science Dept., Stanford University, 1970.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic

progression. In Proceedings of the 19th Annual A CM Symposium on the

Theory of Computing, pages 1 - 6, 1987.

[5] Cray Research Inc. UNICOS Math and Scientific Library Reference

Manual. March 1989. Number SR-2081, Version 5.0.

[6]J.J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A Set of Level

3 Basic Linear Algebra Subprograms. Technical Report MCS-P1-0888,

MCSD, Argonne National Laboratory, August 1988.

[7] J.J. Dongarra, J. DuOroz, I. Duff, and S. Hammarling. A Set of Level

3 Basic Linear Algebra Subprograms: Model Implementation and Test

Programs. Technical Report MCS-P2-0888, MCSD, Argonne National

Laboratory, August 1988.

[8] M.J Gentleman. (private communication).

[9] N. J. tEgham. Exploiting Fast Matrix Multiplication Within the Level 3

BLAS. Technical Report TR 89-984, Cornel1 University, Dept. of Comp.

Science, Ithaca, NY, April 1989. (to appear in ACM TOMS).

[10] N. J. Higham. Stability of a Method for Multiplying Complex Matrices

with Three Real Matrix Multiplications. Numerical Analysis Report 181,

Dept. of Mathematics, University of Manchester, January 1990.

2O

g

[11] W. Miller. _ Computational complexity and numerical stability. SIAM

Journal on Computing, 4:97-107, 1975.

[12] W.H. Press, B.P. Flannery, S.A. Teukolsky, and T. Vetterling. Numerical

Recipes. Cambridge University Press, New York, 1986.

[13] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354

- 356, 1969.

21

